Steady-State BOLD Response Modulates Low Frequency Neural Oscillations
نویسندگان
چکیده
Neural oscillations are the intrinsic characteristics of brain activities. Traditional electrophysiological techniques (e.g., the steady-state evoked potential, SSEP) have provided important insights into the mechanisms of neural oscillations in the high frequency ranges (>1 Hz). However, the neural oscillations within the low frequency ranges (<1 Hz) and deep brain areas are rarely examined. Based on the advantages of the low frequency blood oxygen level dependent (BOLD) fluctuations, we expected that the steady-state BOLD responses (SSBRs) would be elicited and modulate low frequency neural oscillations. Twenty six participants completed a simple reaction time task with the constant stimuli frequencies of 0.0625 Hz and 0.125 Hz. Power analysis and hemodynamic response function deconvolution method were used to extract SSBRs and recover neural level signals. The SSEP-like waveforms were observed at the whole brain level and at several task-related brain regions. Specifically, the harmonic phenomenon of SSBR was task-related and independent of the neurovascular coupling. These findings suggested that the SSBRs represent non-linear neural oscillations but not brain activations. In comparison with the conventional general linear model, the SSBRs provide us novel insights into the non-linear brain activities, low frequency neural oscillations, and neuroplasticity of brain training and cognitive activities.
منابع مشابه
Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex.
BACKGROUND AND PURPOSE Low-frequency (<0.08 Hz) fluctuations in spontaneous blood oxygen level-dependent (BOLD) signal intensity show synchronization across anatomically interconnected and functionally specific brain regions, suggesting a neural origin of fluctuations. To determine the mechanism by which high-frequency neural activity results in low-frequency BOLD fluctuations, I obtained measu...
متن کاملL-DOPA changes spontaneous low-frequency BOLD signal oscillations in Parkinson's disease: a resting state fMRI study
Analysis of the amplitude of low frequency BOLD signal fluctuations (ALFF) in the resting state has recently been used to study the dynamics of intrinsic neural activity. Several studies have also suggested its potential as a biomarker for neuropsychiatric disease. In the current study, we quantified ALFF to determine changes in intrinsic neural oscillations in patients with Parkinson's disease...
متن کاملElectrophysiological Low-Frequency Coherence and Cross-Frequency Coupling Contribute to BOLD Connectivity
Brain networks are commonly defined using correlations between blood oxygen level-dependent (BOLD) signals in different brain areas. Although evidence suggests that gamma-band (30-100 Hz) neural activity contributes to local BOLD signals, the neural basis of interareal BOLD correlations is unclear. We first defined a visual network in monkeys based on converging evidence from interareal BOLD co...
متن کاملBold Alterations in Schizophrenia: Spectral Changes in Resting-state Fmri Signal
PURPOSE Schizophrenia is a mental illness with cognitive impairments, which could be due to the abnormal neural oscillations in the brain[1]. It is believed that the neural oscillations reflect multiple physiological mechanisms in the brain networks, especially prominent in the low-frequency oscillations (LFO) [2]. Therefore, the abnormal LFO distributions may reflect the impaired cognitive fun...
متن کاملResting states affect spontaneous BOLD oscillations in sensory and paralimbic cortex.
The brain exhibits spontaneous neural activity that depends on the behavioral state of the organism. We asked whether the blood oxygenation level-dependent (BOLD) signal reflects these modulations. BOLD was measured under three steady-state conditions: while subjects kept their eyes closed, kept their eyes open, or while fixating. The BOLD spectral density was calculated across brain voxels and...
متن کامل